水平方向地盤反力係数

$$K_{H} = \frac{\cdot K_{H0} \left(\frac{B_{H}}{0.3}\right)^{-3/4}}{0.3}$$

$$= 4.00 \times \frac{1}{0.3} \times 1 \times 28,000 \times \left(\frac{10.0}{0.3}\right)^{-3/4}$$

$$= 26,911 \quad (kN/m^{3})$$

ここに、

K_H : 水平方向の地盤反力係数 (kN/m³)

: 壁体形式に関わる係数

連続した壁体の場合 = 1

親杭横矢板壁の場合 = Bo/Bf 但し、 4

Bo : 親杭中心間隔(m) Bf : 親杭フランジ幅(m)

K_{HO}: 直径30cmの剛体円板による平板載荷試験の値に相当する水平方向の

地盤反力係数(kN/m³)

$$K_{HO} = \frac{1}{0.3}$$
 • E_0

B₁: 換算載荷幅(m)

親杭横矢板壁、連続壁ともに、B_H=10mとする。

 E_0 : 付表 - 1に示す方法で測定又は推定した、設計の対象とする位置での

地盤变形係数(kN/m²)

: 地盤反力係数の推定に用いる係数で付表 - 1 に示す。

付表 - 1 E₀ と

次の試験方法による変形係数 EO(kN/m²)		
	常時	地震時
ボーリング孔内で測定した変形係数	4	8
供試体の一軸または三軸圧縮試験から求めた変形係数	4	8
標準貫入試験のN値よりE ₀ =2800Nで求めた変形係数	1	2

このページは印刷しなくても結構です

杭部材の諸元

断面積
$$A = 171.9 \text{ cm}^2$$

断面係数
$$Zx = 2,280 \text{ cm}^3$$
 , $Zy = 776 \text{ cm}^3$

断面二次半径
$$ix = 15.2$$
 cm , $iy = 8.89$ cm

ヤング係数
$$E = 2.0 \times 10^8 \text{ kN/m}^2$$

横方向地盤反力係数
$$K_H = 26,911 \text{ kN/m}^3$$

杭の特性値

$$X = \sqrt{\frac{B \cdot Kh}{4 \cdot E \cdot Ix}}$$

$$= \sqrt[4]{\frac{0.35 \times 26,911}{4 \times 2.0 \times 10^8 \times 0.00039800}} = 0.415 \text{ m}^{-1}$$

$$\frac{1}{x} = \frac{1}{0.415} = 2.410 \text{ m}$$

$$y = \sqrt[4]{\frac{B \cdot Kh}{4 \cdot E \cdot Iy}}$$

$$= \sqrt[4]{\frac{0.35 \times 26,911}{4 \times 2.0 \times 10^8 \times 0.00013600}} = 0.542 \text{ m}^{-1}$$

$$\frac{1}{V} = \frac{1}{0.542} = 1.845 \text{ m}$$

水平方向地盤反力係数

$$K_{H} = \frac{\cdot K_{H0} \left(\frac{B_{H}}{0.3}\right)^{-3/4}}{0.3}$$

$$= 1.00 \times \frac{1}{0.3} \times 4 \times 500 \times \left(\frac{10.0}{0.3}\right)^{-3/4}$$

$$= 481 \quad (kN/m^{3})$$

ここに、

K_H : 水平方向の地盤反力係数 (kN/m³)

: 壁体形式に関わる係数

連続した壁体の場合 = 1

親杭横矢板壁の場合 = Bo/Bf 但し、 4

Bo : 親杭中心間隔(m) Bf : 親杭フランジ幅(m)

K_{HO}: 直径30cmの剛体円板による平板載荷試験の値に相当する水平方向の

地盤反力係数(kN/m³)

$$K_{HO} = \frac{1}{0.3}$$
 • E_0

B_H : 換算載荷幅 (m)

親杭横矢板壁、連続壁ともに、B_H=10mとする。

 E_0 : 付表 - 1に示す方法で測定又は推定した、設計の対象とする位置での

地盤变形係数(kN/m²)

: 地盤反力係数の推定に用いる係数で付表 - 1 に示す。

付表 - 1 E₀ と

次の試験方法による変形係数 EO (kN/m²)		
	常時	地震時
ボーリング孔内で測定した変形係数	4	8
供試体の一軸または三軸圧縮試験から求めた変形係数	4	8
標準貫入試験のN値よりE ₀ =2800Nで求めた変形係数	1	2

このページは印刷しなくても結構です

$$E_0$$
 B_H

杭部材の諸元

断面積
$$A = 242.5 \text{ cm}^2/\text{m}$$

断面係数
$$Z = 2,270 \text{ cm}^3/\text{m}$$

ヤング係数
$$E = 2.0 \times 10^8 \text{ kN/m}^2$$

横方向地盤反力係数
$$K_H = 481 \text{ kN/m}^3$$

$$= \sqrt[4]{\frac{1.00 \times 481}{4 \times 2.0 \times 10^8 \times 0.00038600 \times 0.45}} = 0.243 \text{ m}^{-1}$$

$$\frac{1}{0.243} = \frac{1}{0.243} = 4.115 \text{ m}$$